DEMOSTRACIONES CON ENCANTO
-5%

DEMOSTRACIONES CON ENCANTO

UN VIAJE POR LAS MATEMÁTICAS ELEGANTES

ALSINA I CATALÀ, CLAUDI / NELSEN , ROGER B.

21,00 €
19,95 €
IVA incluido
En stock
Editorial:
SM
Año de edición:
2021
Materia
Libros juveniles
ISBN:
978-84-1318-779-2
Páginas:
292
Encuadernación:
Rústica
21,00 €
19,95 €
IVA incluido
En stock

Prólogo....................................................................11Introducción........................................................... 15Capítulo 1. Un jardín de enteros.................................................................... 211.1. Números figurados.................................................................211.2. Sumas de cuadrados, cubos y números triangulares............................................................ 261.3. Hay infinitos primos.................................................................... 291.4. Números de Fibonacci................................................................ 321.5. El teorema de Fermat.................................................................... 351.6. El teorema de Wilson.................................................................... 351.7. Números perfectos................................................................. 361.8. Desafíos.................................................................  37Capítulo 2. Números ilustres.................................................................... 392.1. La irracionalidad de 2............................................................................. 402.2. La irracionalidad de k cuando k no es un cuadrado perfecto.................................................. 412.3. La razón áurea...................................................................... 422.4. La circunferencia y p............................................................................. 452.5. La irracionalidad de p............................................................................. 472.6. El conde de Buffon y su aguja...................................................................... 482.7. El número e como límite..................................................................... 492.8. Una serie infinita para e............................................................................ 522.9. La irracionalidad de e............................................................................ 522.10. El problema de Steiner sobre el número e............................................................................ 532.11. La constante de Euler-Mascheroni........................................................... 532.12. Exponentes racionales e irracionales........................................................... 552.13. Desafíos................................................................ 56Capítulo 3. Puntos en el plano..................................................................... 593.1. La fórmula de Pick....................................................................... 593.2. Circunferencias y sumas de dos cuadrados.............................................................. 613.3. El teorema de Sylvester-Gallai.................................................................... 633.4. Partiendo en dos un conjunto de cien mil puntos................................................................... 643.5. Palomas y palomares............................................................. 653.6. Asignando números a los puntos del plano..................................................................... 663.7. Desafíos......................................................... 68Capítulo 4. El patio de recreo de los polígonos.............................................................. 694.1. Combinatoria poligonal............................................................... 694. 2. Dibujar un polígono conocidas las longitudes de sus lados................................................................ 724.3. Los teoremas de Maekawa y Kawasaki............................................................... 734.4. Cuadratura de polígonos............................................................... 754.5. Las estrellas del patio de los polígonos............................................................... 764.6. Los vigilantes de la galería de arte......................................................................... 784.7. Triangulaciones de polígonos convexos................................................................ 804.8. Cicloides, ciclógonos y cicloides poligonales............................................................. 834.9. Desafíos.................................................................. 85Capítulo 5. Un tesoro de teoremas sobre triángulos................................................................ 875.1. El teorema de Pitágoras................................................................. 875.2. Parentescos pitagóricos.............................................................. 885.3. El radio de la circunferencia inscrita en un triángulo rectángulo ............................................... 915.4. La generalización de Pappus del teorema de Pitágoras................................................................. 925.5. La circunferencia inscrita y la fórmula de Herón...................................................................... 935.6. La circunferencia circunscrita y la desigualdad triangular de Euler ................................................. 955.7. El triángulo órtico...................................................................... 965.8. La desigualdad de Erdo?s-Mordell................................................................... 975.9. El teorema de Steiner-Lehmus................................................................... 995.10. Las medianas de un triángulo............................................................... 1005.11. ¿Son obtusángulos la mayoría de los triángulos?............................................................ 1025.12. Desafíos................................................................ 103Capítulo 6. El embrujo del triángulo equilátero.............................................................. 1056.1. Teoremas de estilo pitagórico.............................................................. 1056.2. El punto de Fermat de un triángulo............................................................... 1086.3. El teorema de Viviani.................................................................. 1096.4. Una teselación triangular del plano y la desigualdad de Weitzenböck................................ 1106.5. El teorema de Napoleón.............................................................. 1126.6. El milagro de Morley.................................................................. 1136.7. El teorema de Van Schooten............................................................... 1156.8. El triángulo equilátero y la razón áurea..................................................................... 1166.9. Desafíos......................................................... 117Capítulo 7. El rincón de los cuadriláteros......................................................... 1197.1. Puntos medios en cuadriláteros......................................................... 1197. 2. Cuadriláteros cíclicos................................................................. 1217.3. Igualdades y desigualdades en un cuadrilátero.......................................................... 1237.4. Cuadriláteros tangenciales y bicéntricos............................................................ 1267.5. Los teoremas de Anne y Newton................................................................. 1277.6. Pitágoras con un paralelogramo y triángulos equiláteros ........................................................... 1297.7. Desafíos........................................................ 130Capítulo 8. Cuadrados por todas partes.................................................................... 1338.1. Teoremas con un cuadrado............................................................... 1338.2. Teoremas con dos cuadrados.............................................................. 1358.3. Teoremas con tres cuadrados.............................................................. 1408.4. Con cuatro y más cuadrados.............................................................. 1428.5. Cuadrados y matemáticas recreativas............................................................ 1448.6. Desafíos......................................................... 146Capítulo 9. Curvas a la vista .............................................................................  149 Cuadraturas de lúnulas ............................................................................. 1499.2. La asombrosa espiral de Arquímedes ............................................................................ 1559.3. La cuadratriz de Hipias................................................................. 1579.4. El cuchillo de zapatero y la bodega de sal....................................................................... 1589.5. Las cónicas según Quetelet y Dandelin ............................................................................ 1609.6. Triángulos de Arquímedes.........................................................1619.7. Hélices............................................................... 1649.8. Desafíos.............................................................. 165Capítulo 10. Aventuras con embaldosados y coloreados........................................................... 16910.1. Embaldosados y teselaciones del plano................................................................... 17010.2. Embaldosados con triángulos y cuadriláteros....................................................... 17410.3. Infinitas demostraciones del teorema de Pitágoras............................................................. 17710.4. La rana saltarina............................................................... 17910.5. Los siete frisos.................................................................... 18110.6. Demostraciones coloridas ....................................................................................... 18410.7. El dodecaedro y los caminos hamiltonianos.......................................................... 19210.8. Desafíos..................................................................................................................... 194Capítulo 11. Geometría en tres dimensiones...................................................... 19711.1. El teorema de Pitágoras en tres dimensiones....................................................... 19811.2. Particiones del espacio con planos........................................................................ 19911.3. Triángulos correspondientes en tres rectas.......................................................... 20111.4. Un cono que triseca ángulos ................................................................................. 20111.5. La intersección de tres superficies esféricas......................................................... 20211.6. La cuarta circunferencia......................................................................................... 20411.7. El área del triángulo esférico................................................................................. 20511.8. La fórmula de Euler para poliedros....................................................................... 20611.9. Caras y vértices de poliedros convexos................................................................. 20711.10. ¿Por qué se repiten las formas de algunas caras de los poliedros?..................... 20911.11. Euler y Descartes à la Pólya................................................................................... 21011.12. Cuadriculando cuadrados y cubiculando cubos................................................... 21111.13. Desafíos................................................................................................................... 213Capítulo 12. El patio de recreo de los polígonos................................................ 21512.1. Conjuntos numerables y no numerables.............................................................. 21512.2. El teorema de Cantor-Schröder-Bernstein............................................................ 21712.3. La desigualdad de Cauchy-Schwarz...................................................................... 21812.4. La desigualdad entre la media aritmética y la media geométrica....................... 22012.5. Dos perlas del origami............................................................................................ 22112.6. ¿Cómo dibujar una línea recta?.............................................................................. 22312.7. Algunas joyas de las ecuaciones funcionales....................................................... 22512.8. Desigualdades funcionales.................................................................................... 23012.9. La serie de Euler para p2/6..................................................................................... 23312.10. El producto de Wallis.............................................................................................. 23512.11. La aproximación de Stirling para n!...................................................................... 23612.12. Desafíos................................................................................................................... 238Soluciones a los desafíos........................................................................................... 241Capítulo 1........................................................................................................................... 241Capítulo 2........................................................................................................................... 243Capítulo 3........................................................................................................................... 247Capítulo 4........................................................................................................................... 249Capítulo 5........................................................................................................................... 251Capítulo 6........................................................................................................................... 255Capítulo 7........................................................................................................................... 258Capítulo 8........................................................................................................................... 261Capítulo 9........................................................................................................................... 262Capítulo 10......................................................................................................................... 265Capítulo 11.......................................................................................................................... 269Capítulo 12......................................................................................................................... 270Referencias bibliográficas......................................................................................... 273Índice por palabras...................................................................................................... 283Sobre los autores........................................................................................................... 289

Esta obra presenta una colección de demostraciones notables en matemáticas elementales, sobre números, geometría, desigualdades, funciones, origami, teselaciones, de una elegancia excepcional, sucintas e ingeniosas.  A través de razonamientos sorprendentes o de potentes representaciones visuales, esperamos que esta selección de demostraciones invite a los lectores a disfrutar de la belleza de las matemáticas.Además, cada capítulo concluye con desafíos al lector —se plantean alrededor de ciento treinta—, a quien animamos a que busque por sí mismo demostraciones con encanto y a compartir sus descubrimientos con otros. 

Artículos relacionados

  • ¡VIAJANDO SIN PARAR! (ALEXITY 3)
    ALEXITY,
    Alexia está preparada para su tercera aventura. Destino: ¡Los Ángeles! Las Unity Crew se encuentran de camino a L.A. para participar en un gran concurso de baile. Pero... una vez más, no han tenido tiempo de preparar su coreografía. ¡Algunas cosas nunca cambian! Por su parte, Alexia quiere asegurarse de que todo va a salir perfecto... Sin embargo, ella también tiene un par d...
    En stock

    13,95 €13,25 €

  • LA ISLA DEL TESORO
    NOEL JACK / STEVENSON ROBERT LOUIS
    Jim Hawkins sueña con vivir en el mar. Después de conocer a un viejo capitán con un gran SECRETO, Jim se adentra en una aventura más espectacular de lo que jamás habría imaginado. Enseguida se va a buscar un TESORO enterrado, acompañado de Long John Silver, un misterioso marinero... ¿Escapará Jim de los PIRATAS? ¿O acabará dándose un gran chapuzón?¡Embárcate junto a Jim, un lor...
    En stock

    14,00 €13,30 €

  • REINO DE LADRONES
    BARDUGO, LEIGH
    Kaz Brekker y su equipo han dado un golpe tan temerario que ni siquiera ellos pensaban sobrevivir. Pero en lugar de conseguir una buena recompensa, a su regreso de la Corte de Hielo tienen que seguir luchando por sus vidas. Traicionado y debilitado, el equipo está corto de recursos, aliados y esperanza. Mientras poderosas fuerzas de todo el mundo llegan a Ketterdam para desentr...
    En stock

    18,00 €17,10 €

  • LOS CINCO DETECTIVES 13: MISTERIO DEL FUGITIVO
    BLYTON ENID
    Hay un criminal a la fuga. ¡El peor momento para que Fatty tenga visita en casa! Pero la invitada puede resultar clave para que Los cinco detectives desvelen el misterio.Los misteriosos casos de Los cinco detectives en una atractiva edición ilustrada. ...
    En stock

    12,00 €11,40 €

  • DÍMELO CON BESOS (DÍMELO 3)
    RON, MERCEDES
    ENAMÓRATE DE LOS HERMANOS DI BIANCO TUS MEJORES AMIGOS. TU MAYOR PERDICIÓN Descubre el final de la saga más romántica de Mercedes Ron Kamila Hamilton debe decidir entre los dos hermanos Di Bianco: Thiago o Taylor# Taylor o Thiago. Escoger a uno significa renunciar al otro, pero ¿cómo puede dejar atrás una parte de sí misma? THIAGO HACE QUE TOQUE EL CIELO CON LOS DEDOS TAYLOR S...
    En stock

    17,95 €17,05 €

  • SEIS DE CUERVOS
    BARDUGO, LEIGH
    Kaz Brekker, un genio del crimen que regenta un antro de juegos de azar y apuestas conocido como el Club Cuervo, debe reunir a un grupo de seis personas con las habilidades necesarias para entrar (y salir) de la Corte de Hielo, una fortaleza inexpugnable que mantiene bajo llave un secreto que podría dinamitar el equilibrio de poder en el mundo. Es probable que nadie sobreviva ...
    En stock

    18,00 €17,10 €